Decimals up to 2 d.p.

1 What number is represented on the place value chart?

Ones	Tenths	Hundredths
	0.10	0.00
		0
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

Complete the sentences.

Represent these numbers on a place value chart.
Complete the sentences.
a) 0.56

b) 0.08

There are \square ones, \square tenths and \square hundredths.
c) 1.48

There is \square one, \square tenths and \square hundredths.
d) 2.07

There are \square ones, \square tenths and \square hundredths.

3 Mo is thinking about tenths and hundredths.

What is the value of the digit 4 in each of these numbers?
a) 14.8 \qquad d) 42.03
\qquad
b) 13.74 \qquad e) 106.48 \qquad
c) 8.04 \qquad f) 176.4 \qquad

4 a) Circle the number that has 5 in the tenths position.

53
5.3
0.53
b) Write three numbers that have 3 in the hundredths position.

5 Complete the calculations.
a) $0.64=0.6+$ \square
c) $0.3+0.05=$ \square
b) $0.53=0.5+$ \square
d) $0.06+0.8=$ \square

Rosie is finding different ways to partition 0.73

Ones	Tenths	Hundredths
0	0	7

In what other ways can 0.73 be partitioned?
List as many ways as you can below.
\qquad
\qquad

7 Alex is thinking of a number.

a) What number could Alex be thinking of? Talk about it with a partner.
b) Write all the possible numbers Alex could be thinking of.
\qquad
c) Write another clue that would mean Alex's number is 1.34

8 Match the words to the numerals.

5 ones, 6 tenths and 5 hundredths

5 tenths and 6 hundredths

5 ones, 5 tenths and 6 hundredths

6 tens and 5 hundredths

9 Annie has three digit cards.

Are the statements true or false? Explain your answers.
a) The largest number Annie can make is 5.02
b) The smallest number Annie can make is 0.25
\qquad
c) Annie can make six different numbers
\qquad

Understand thousandths

Tommy is using base 10 to represent decimals.

to represent 1 whole

He uses
 to represent $\frac{1}{10}$ or 0.1

He uses 月 $^{\text {目 }}$ to represent $\frac{1}{100}$ or 0.01
He uses to represent $\frac{1}{1000}$ or 0.001

What decimals are represented?

"
\square
a) Represent each number using base 10
0.512
1.352
2.003
b) Use your representations to help you complete the statements.

(3)

Here is a thousand square.
Part of the square has been coloured.

a) Why do you think it is called a thousand square?
b) What fraction of the square has been coloured?

c) Write the fraction as a decimal.
a)

decimal $=$ \square
b)

decimal $=$ \square

5 Colour the grids to represent the fraction and decimal.
a) $\frac{73}{1000}$

b) 0.302

b)

Ones	Tenths	Hundredths	Thousandths
	0.1		0.000

Represent these numbers on a place value chart.
a) 1.372
b) 0.091
c) 3.542
(7)

Show that $\frac{400}{1000}$ is the same as 0.4

8 Write the numbers represented by the place value charts.
a)

\square
(2) Complete the sentences.

(1) Use place value counters to make the numbers.

Draw your answers.
a) 1.343

T	0	Tth	Hth	Thth

b) $\mathbf{1 6 . 0 5 2}$

c) 7.001

d) 70.01

Complete the part-whole models.
a)

b)

5 Complete the number sentences.
a) $17.134=10+7+0.1+\square+0.004$
b) $94.077=90+4+0.07$ \square
c)

6 Complete the number sentences.

7 Mo and Annie have represented 0.121 on their place value charts.

Mo's chart

0	Tth	Hth	Thth
	0	O	0
	0		

Annie's chart

Who do you agree with? \qquad
Explain why.
\qquad
\qquad
\qquad
\qquad
a) Draw counters on the place value charts to represent each calculation.
4.4×1

Th	H	T	O	Tth	Hth

4.4×10

Th	H	T	O	Oth	Hth

4.4×100

Th	H	T	O	Tth	Hth

$4.4 \times 1,000$

Th	H	T	O	Tth	Hth

b) Complete the calculations.

What do you notice?

4 Complete the calculations.
a) $13.44 \times 10=$ \square
d) $4.4 \times$ \square $=4,400$
b) $41.4 \times 100=$ \square
e) \square $=1.03 \times 100$
c) $0.415 \times 1,000=$ \square
f) $30.44=$ \square $\times 10$

5 Complete the diagrams.

What do you notice? Why does this happen?
\qquad
\qquad
\qquad
\qquad

6 Write $>,<$ or $=$ to compare the number sentences.

7 Kim is calculating 14.3×200
She writes this as her answer.

$$
14.3 \times 200=28.600
$$

Explain Kim's mistake.
\qquad
\qquad

8 Use the cards to complete the calculation. You can use each card more than once.

How many ways is it possible to complete this calculation? Talk about it with a partner.
a) Draw counters to represent the calculations.
$123 \div 1$
$123 \div 1$

H	T	O	Tth	Hth	Thth

$123 \div 10$

H	T	O	Tth	Hth	Thth

$123 \div 100$

H	T	O	Tth	Hth	Thth

$123 \div 1,000$
$123 \div 1,000$

H	T	0	Tth	Hth	Thth

b) Complete the calculations.

What do you notice?

1

Complete the calculations and sentences.
Use place value counters to help you.

Th	H	T	O	Tth	Hth
	\bigcirc	$\bigcirc O$			
		O			

a) $140 \div 10=$ \square
When the number is divided by 10 the counters move \square place to the right.
b) $140 \div 100=$ \square
When the number is divided by 100 the counters move

places to the right.
c) $140 \div 1,000=$ \square
When the number is divided by 1,000 the counters move \square places to the right.
(2) Complete the diagram.

\qquad
(4) Complete the calculations.
a) $16 \div 10=$ \square
d) $332 \div$ \square $=0.332$
b) $43.4 \div 100=$ \square
e) $2.4 \div 200=\square$
c) $614 \div 1,000=$ \square
f) $5.09=$ $\square$$\div 20$

5 Complete the diagrams.

What do you notice? Why does this happen?
\qquad
\qquad
\qquad
(8) Rosie is solving the calculation $3,600 \div 200$

Is Dexter correct? \qquad
Explain your reasoning.
\qquad
\qquad

Is Rosie correct? \qquad
Explain your reasoning.
Dexter is solving the calculation $5,400 \div 100$

I think the
\qquad

