(1) There are 84 pencils to be shared equally into 4 pots.

a) Draw the pencils on the place value chart to show how they are shared.

Tens	Ones

b) Complete the number sentences.

c) How many pencils are in each pot? \square
(2) Use a place value chart to work out the calculations.
a) $39 \div 3=$ \square
b) $68 \div 2=\square$
3) Amir solves $48 \div 2$ on a place value chart.

Tens	Ones
10	10
10	10
10	1

Complete the part-whole model to show what Amir has done.

$$
48 \div 2=\square
$$

(4) Work out the divisions.
a) $69 \div 3=\square$
b) $66 \div 2=$

6

Do you agree with Annie? \qquad
Explain why.
\qquad
\qquad

Can Annie divide 88 equally by any other 1-digit numbers?

Esther has 2 jars of mints.
Esther shares the mints equally between 3 bowls.

How many mints are in each bowl?

There are \square mints in each bowl.

How many different ways can you work out the answer?

Divide 2-digits by 1-digit (2)

Rosie has 56 pencils.
a) Draw base 10 to represent the pencils.

Rosie shares the 56 pencils equally between 4 pots.
b) Draw base 10 on the place value grid to share the pencils.

Tens	Ones

c) How many pencils are in each pot? \square
d) Did you have to make an exchange?

2
Eva has this money

She wants to share the money equally between 3 people.
a) Use the place value chart to show how Eva can share the money.

Tens	Ones

b) How much money does each person get? \square
(3) Divide 72 by 3
(10) (10) (10) 10 (10)

Tens	Ones

Use the place value counters to help you.
$72 \div 3=$ \square
(4) Use base 10 or counters to work out the divisions.
a) $45 \div 3=\square$
b) $57 \div 3=\square$
c) $92 \div 4=\square$
(5) Rosie and Tommy are working out $52 \div 4$

They both use a part-whole model.

a) Whose part-whole model will help them with the division?

How do you know?
\qquad
\qquad
b) Use a part-whole model to work out $52 \div 4$ \square
(1) Mo has these lolly sticks.

He uses them to make squares.
How many squares can Mo make?

Complete the sentences.
There are 17 lolly sticks.
There are \square groups of 4
There is \square lolly stick remaining.
$17 \div 4=$ \square remainder \square
Mo can make \square squares.
(2) Mo now uses the lolly sticks to make triangles. How many triangles can Mo make?

Complete the sentences.

There are 17 lolly sticks.
There are \square groups of 3

There are \square lolly sticks remaining.
$17 \div 3=$ \square remainder \square

Mo can make \square triangles.

3 Finally, Mo uses the lolly sticks to make pentagons.
How many pentagons can Mo make?

Complete the sentences.
There are 17 lolly sticks.
There are \square groups of 5
There are \square lolly sticks remaining.
$17 \div 5=\square$ remainder \square
Mo can make \square pentagons.

4 Use repeated subtraction to complete the divisions.
Use the number lines to help you.
a) $23 \div 4=$ \square remainder \square

b) $23 \div 5=\square$ remainder \square

c) $23 \div 3=$ \square remainder \square

5
Eva works out $34 \div 4$

Is Eva correct? \qquad
How do you know?
(6) Complete the calculations.
a) $29 \div$ \square $=4$ remainder 5 c) $29 \div \square=14$ remainder 1
b) $29 \div$ \square $=4$ remainder 1
7) How do you know there is no remainder when 75 is divided by 5?

Without doing the division, what is the remainder when 76 is divided by 5 ?

8 Use place value counters and a place value chart to work out the divisions.
a) $87 \div 4=$ \square remainder \square
b) $77 \div 3=$ \square remainder \square
c) $74 \div 5=$ \square remainder \square
9) Teddy has fewer than 60 marbles but more than 40

When he shares them equally into 3 pots he has no remainders. When he shares them equally into 4 pots he has remainder 3 When he shares them equally into 5 pots he has remainder 1 How many marbles could Teddy have?
\square

