1 Use place value counters to solve the calculations.
a) $3.2 \times 3=\square$

b) $4.6 \times 2=$ \square

(2)

Solve the multiplication. Draw your answer.
$12.2 \times 3=$ \square

Tens	Ones	Tenths

b) $14.3 \times 3=$ \square e) $11.505 \times 4=$ \square
c) $6 \times 9.1=$ \square f) $9.602 \times 6=$ \square
a)

b)

(4) Work out the multiplications.
a) $5.2 \times 4=$ \square
d) \square $=2.34 \times 3$
0.25 kg of flour is needed to make one cake.

6 Work out the multiplications.
a) $7.2 \times 2=\square$
$7.2 \times 4=$ \square
$14.4 \times 4=$

$7.2 \times 8=$ \square
b) \square $=3.45 \times 3$
\square $=34.5 \times 3$

7 Amir is solving 3.4×4

Do you agree with Amir? \qquad
Explain why.
8 Use the digits 1, 2, 3 and 4 once each to create a calculation
How much flour is needed to make four cakes?

a) How many different products can you make?
b) What is the greatest possible product?
\square
c) What is the smallest possible product?
\square
d) What is the product closest to 12 ?
\square
-

Brett uses short division to work out $13.2 \div 6$

		0	$2 \cdot 2$	
	6	1	1	$13 \cdot{ }^{1} 2$

(1) Use place value counters to work out the divisions.
a) $8.4 \div 4=\square$

Use short division to work out the calculations.
a)

			\cdot		
	7	2	$2 \cdot 4$		

b)

(4) Work out the divisions.
a) $25.6 \div 8=$

d) \square $=19.45 \div 5$
b) $14.8 \div 4=$ \square
e) $202.35 \div 3=$ \square
c) $18.48 \div 6=$ \square
f) $105.12 \div 9=\square$

5 Esther solves $13.2 \div 4$ by partitioning 13.2 into two numbers that are easier to divide.

Use Esther's method to complete the part-whole model and calculation.

b)

$9.2 \div 4=$ \square

6 Work out the divisions.
a) $9.64 \div 4=\square$
\square

$$
0.964 \div 4=\square
$$

$$
9.64 \div 8=
$$

\square
b) $19.44 \div 9=$ \square

\square

7 Fill in the missing numbers.

(8) Complete the calculation.

How many different solutions can you find?

Division to solve problems

1.

There are 1,360 children in a school. A quarter of the children walk to school.
How many children walk to school?
\square

2 Huan has saved his pocket money for 5 weeks. He gets the same pocket money every week. He has saved $£ 16.65$

How much pocket money does Huan get each week?

(3) Tom is running a 6-kilometre race.

He has run one-third of the race so far.
How many more kilometres does Tom have left to run?

4 Dora, Ron and Teddy are making paper chains.
a) How long is Ron's paper chain?
\square
b) How long is Teddy's paper chain?

5 A water bottle holds 2 litres.
A leak in the bottle means 25 ml drips out each day. How many days will it take until the bottle is empty?

\square

days
a) A school bus can hold 30 people.

There are 726 children going on a school trip.

How many buses are needed?
b) A cake needs 4 eggs.

How many cakes can be made from 345 eggs?

Shop A sells 5 tins of paint for $£ 23.40$ Shop B sells 3 tins of the same paint for $£ 14.01$

Which shop should Aisha buy her paint from? \qquad Explain your reasoning
$8 \quad 146 \div 5=29$ remainder 1
$117 \div 4=29$ remainder 1

Do you agree with Whitney? \qquad
Explain your thinking.
\qquad
\qquad

9 I'm thinking of a 3-digit number.
When I divide it by 5,1 am left with a remainder of 3
When I divide it by 10,1 am left with a remainder of 8
It rounds to 200 to the nearest 100
It has one hundred.
What could my number be?
\square
Create your own problem like this for a partner.
a) Shade 0.17 of the hundred square.

Complete the sentence.

Write 0.17 as a fraction.

b) Shade 0.2 of the hundred square.

Complete the sentence.

Write 0.2 as a fraction in its simplest form.

3

0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

0.2	0.2	0.2	0.2	0.2

Use the bar models to fill in the missing numbers.
$0.2=\frac{\square}{10}=\frac{1}{\square}$
$0.4=\frac{\square}{10}=\frac{2}{\square}$
$\square=\frac{\square}{10}=\frac{4}{5}$
(4) Fill in the missing numbers.
a) $0.54=\frac{\square}{100}=\frac{\square}{50}$
b) $0.6=\frac{\square}{10}=\frac{\square}{5}$
c) $0.3=\frac{\square}{10}=\frac{\square}{100}$
d)

e)

f) $\frac{21}{50}=\frac{\square}{100}=$ \square

b)

Draw a diagram to show that Ron is wrong.
\square
(2) a

a) | \mid | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0.1 | | | | | | | |
| 1 | | | | | | | | |

b)

What is the same and what is different about the number lines?

3 To convert a fraction to a decimal, you can use equivalent fractions to make the denominator 100

Use this method to find the equivalent decimals for the fractions.
a) $\frac{28}{50}=\frac{\square}{100}=$ \square
c) $\frac{9}{25}=\frac{\square}{100}=$ \square
b) $\frac{6}{20}=\frac{\square}{100}=\square$

4 Some fractions can be converted to have a denominator of 1,000 to find their decimal equivalent.

a) $\frac{27}{500}=\frac{\square}{1000}=$ \square
b) $\frac{62}{250}=\frac{\square}{1000}=\square$
c) $\frac{51}{200}=\frac{\square}{1000}=\square$
d) $\frac{128}{2,000}=\frac{\square}{1000}=\square$

5 Convert the fractions to their decimal equivalents.
a) $\frac{1}{5}$ \square
b) $\frac{1}{20}=$ \square
\square

\square

\square
$\frac{6}{20}=$ \qquad

6 Tommy, Alex and Eva are working out the decimal equivalent of $\frac{60}{200}$

I disagree. You need to convert it to have a denominator of 1,000

Eva

Who do you agree with? \qquad
Explain your thinking.
\qquad
(7) 0.5 is equivalent to $\frac{1}{2}, \frac{5}{10}, \frac{50}{100}$

Are these the only fractions that are equivalent to 0.5 ?
How many fractions can you find?

Compare answers with a partner.

