What is a fraction?

a)

c)

3

b)

d)

47

a)

c)

<u>5</u>

d)

<u>5</u>

<u>3</u>

10 11

How do you know which are unit fractions?

Α

D

F

В

E

G

C

b) Complete the sentences to describe the shapes with one third shaded.

There are 3 equal parts altogether.

Oraw an arrow to show the position of $\frac{5}{5}$ on the number line.

What do you notice?

- a) What fraction of the shapes are triangles?
- **b)** What fraction of the shapes are squares?
- c) What fraction of the shapes have four sides?
- d) Draw 2D shapes to match the description.

 $\frac{1}{5}$ are squares, $\frac{2}{5}$ are triangles, $\frac{3}{5}$ have more than 3 sides.

Compare shapes with a partner.

What is the same about your shapes? Is anything different?

67

Shade the bar models to represent the equivalent fractions.

- a) $\frac{1}{2}$

$$\frac{1}{2} = \frac{3}{6}$$

b) $\frac{1}{2}$ $\frac{1}{2}$

- $\frac{1}{2} = \frac{5}{10}$
- c) $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

$$\frac{4}{5}=\frac{8}{10}$$

d) $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$

$$\frac{1}{4}$$

$$\frac{6}{8} = \frac{3}{4}$$

Use the fraction wall to complete the equivalent fractions.

	<u>-</u>	<u>1</u>		1/2			
- 2	<u>1</u> 1	- 4	<u>1</u> 1	- 2	<u>1</u> 1	- 2	<u>1</u> 1
1/8	1/8	1/8	1/8	1/8	1/8	1/8	<u>1</u> 8

a)
$$\frac{1}{2} = \frac{2}{4}$$

(a)
$$\frac{2}{4} = \frac{4}{8}$$

e)
$$\frac{6}{8} = \frac{3}{4}$$

b)
$$\frac{1}{2} = \frac{4}{8}$$

d)
$$\frac{2}{8} = \frac{1}{4}$$

$$\frac{2}{2} = \frac{4}{4} = \frac{8}{8}$$

3) a) Label the fractions on the fraction wall.

				1				
	3			3			3	
16		16	1)6		16	16		16
19	19	19	19	-19	19	19	-(9	49

b) Use the fraction wall to complete the equivalent fractions.

$$\frac{1}{3} = \frac{2}{6} = \frac{3}{9}$$

$$\frac{2}{3} = \frac{4}{6} = \frac{6}{9}$$

$$\frac{3}{3} = \frac{6}{6} = \frac{9}{9} = 1$$

4

Here is a fraction wall.

	1/2			1/2					
<u>1</u>	<u> </u> }			1	<u> </u> }			3	<u>1</u> 3
1/4			1/4			1/4			1/4
<u>1</u> 5		<u>1</u> 5		1	<u> </u>		<u>1</u> 5		<u>1</u> 5
<u>1</u> 6		<u>l</u>		1/6	<u>1</u> 6		<u>1</u>	;	<u>1</u> 6

Is each statement true or false? Tick your answers.

a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$

True False

b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$

c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$

d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$

e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$

f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.

Ask a partner to say if they are true or false.

Are the statements always, sometimes or never true?

Circle your answer.

Draw a diagram to support your answer.

a) The greater the numerator, the greater the fraction.

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

Equivalent fractions

Shade the shapes to show the equivalent fractions.

$$\frac{1}{4} = \frac{\boxed{3}}{12}$$

$$\frac{3}{4} = \frac{\boxed{9}}{12}$$

$$\frac{1}{6} = \frac{2}{12}$$

$$\frac{5}{6} = \frac{\boxed{10}}{\boxed{12}}$$

Draw two rectangles to show that $\frac{1}{3} = \frac{4}{12}$

a) Sort the fractions into the groups.

Equivalent to $\frac{1}{4}$

<u>5</u> 15

2
8

b) Write one more fraction in each group.

<u>3</u> 12

Complete the equivalent fractions.

a)
$$\frac{1}{7} = \frac{2}{14}$$
 d) $\frac{3}{4} = \frac{6}{8}$ g) $\frac{2}{3} = \frac{10}{15}$

d)
$$\frac{3}{4} = \frac{6}{2}$$

g)
$$\frac{2}{\boxed{3}} = \frac{10}{15}$$

b)
$$\frac{5}{7} = \frac{10}{14}$$

e)
$$\frac{3}{4} = \frac{12}{16}$$

b)
$$\frac{5}{7} = \frac{10}{14}$$
 e) $\frac{3}{4} = \frac{12}{16}$ h) $\frac{2}{5} = \frac{10}{25}$

c)
$$\frac{7}{8} = \frac{14}{16}$$
 f) $\frac{3}{4} = \frac{9}{12}$ i) $\frac{2}{7} = \frac{10}{35}$

f)
$$\frac{3}{4} = \frac{9}{12}$$

i)
$$\frac{2}{7} = \frac{10}{35}$$

j) Describe the pattern in part g), h) and i) to a partner.

Find three ways to make the fractions equivalent.

$$\alpha) \frac{1}{2} = \frac{7}{14}$$

b)
$$\frac{7}{7} = \frac{14}{14}$$

c)
$$\frac{1}{7} = \frac{2}{14}$$

$$\frac{\boxed{5}}{7} = \frac{\boxed{0}}{14}$$

$$\frac{1}{100} = \frac{7}{700}$$

$$\frac{7}{10} = \frac{14}{20}$$

$$\frac{21}{7} = \frac{42}{14}$$

Ron is finding equivalent fractions to $\frac{1}{4}$

Do you agree with Ron? No

Draw a diagram to support your answer.

Compare answers with a partner.

7 Here are some equivalent fractions.

Find the values of A, B and C.

<u>A</u>

3 B

<u>2</u> 18

<u>C</u>

8 Here are three fraction cards.

All the fractions are equivalent.

3 A B 14

12 C

A + B = 13

Work out the value of C.

$$\frac{1}{5} = \frac{3}{1+6}$$

Find the value of

Complete the sentences.

There are 7 fifths altogether.

There are 13 fifths altogether.

- $\frac{13}{13}$ fifths = $\frac{2}{12}$ wholes +
- 3 fifths

There are 3 quarters altogether.

- 13 quarters = 3 wholes +
- quarter

2 Shade the bar models to represent the fractions.

Complete the number sentences.

$$\frac{5}{3} = \boxed{}$$
 whole + $\boxed{}$ thirds = $\boxed{}$

b)
$$\frac{8}{3}$$

$$\frac{8}{3} = \boxed{2}$$
 wholes + $\boxed{2}$ thirds = $\boxed{2\frac{2}{3}}$

c)
$$\frac{8}{5}$$

$$\frac{8}{5} = \boxed{}$$
 whole + $\boxed{}$ fifths = $\boxed{}$

- Complete the statements.
 - a) $\frac{12}{2} = \frac{6}{6}$ wholes
- e) $\frac{15}{3} = 5$ wholes
- **b)** $\frac{12}{4} = 3$ | wholes
- f) $\frac{15}{5} = 3$ wholes
- c) $\frac{12}{6} = 2$ wholes g) $\frac{15}{4} = 3$ wholes + 3 quarters
- d) $\frac{12}{3} = \frac{1}{4}$ wholes h) $\frac{15}{2} = \frac{7}{7}$ wholes + $\frac{1}{1}$ half
- Whitney bakes 26 muffins.

a) How many boxes can Whitney fill?

- Whitney can fill (boxes.
- b) How many more muffins does Whitney need to fill another box?

muffins to fill another box. Whitney needs

Explain how you know.

She will fill 6 boxes with 2 left over so another

2 are needed to sell the severth box

How does writing $\frac{26}{4}$ help you to answer this?

Write <, > or = to complete the statements.

a) 2 wholes and 3 quarters

2 wholes and 3 quarters

2 wholes and 3 sixths

2 wholes and 3 eighths

a)

c)

e)

f)

5 quarters

15 quarters

15 sixths

15 eighths

15 5

<u>20</u> 4

Improper to mixed numbers

mbers

7

-		
α)		
u,		
-	ı	
	ı	

- Convert the improper fractions to mixed numbers.

- Eva has 7 bottles of juice.

Each bottle contains half a litre of juice.

How many litres of juice does Eva have altogether?

Write your answer as a mixed number.

Dexter is converting improper fractions.

Explain why Dexter is incorrect.

Find the value of 🔵

$$\frac{27}{\bigcirc} = \bigcirc \frac{2}{\bigcirc}$$

Find two possible values for \bigstar and \blacktriangle

$$\frac{30}{\bigstar} = \Delta \frac{2}{\bigstar}$$