What is a fraction?

a)

c)

b)

d)

Shade each diagram to represent the fractions.

a)

c)

b)

<u>10</u> 11

How do you know which are unit fractions?

a) Tick the shapes with one third shaded.

Α

В

G

C

b) Complete the sentences to describe the shapes with one third shaded.

equal parts altogether. There are

	out of	equal p	oarts	is shad	led.

d)
$$\frac{1}{3}$$
 0

Oraw an arrow to show the position of $\frac{5}{5}$ on the number line.

Draw four	different representations	of $\frac{3}{2}$
	Draw four	Draw four different representations

b) What fraction	of the	shapes	are	squares
-------------------------	--------	--------	-----	---------

d) Draw 2D shapes	to	match	the	description
-------------------	----	-------	-----	-------------

$$\frac{1}{5}$$
 are squares, $\frac{2}{5}$ are triangles, $\frac{3}{5}$ have more than 3 sides.

Compare shapes with a partner.

What is the same about your shapes? Is anything different?

Shade the bar models to represent the equivalent fractions.

$$\frac{1}{2} = \frac{3}{6}$$

b) $\frac{1}{2}$ $\frac{1}{2}$

$$\frac{1}{2} = \frac{5}{10}$$

c) $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$

$$\frac{4}{5} = \frac{8}{10}$$

1/4	1/4	1/4	1/4
4	4	4	4

$$\frac{6}{8} = \frac{3}{4}$$

Use the fraction wall to complete the equivalent fractions.

	<u>-</u>	<u>1</u>		1/2				
- 2	<u>1</u> 4	- 4	<u>1</u> 4	- 2	<u>1</u> 1	1/4		
1/8	1/8	<u>1</u> 8	<u>1</u> 8	<u>1</u> 8	1/8	1/8	18	

a)
$$\frac{1}{2} = \frac{4}{4}$$

c)
$$\frac{2}{4} = \frac{4}{1}$$

e)
$$\frac{3}{8} = \frac{3}{4}$$

b)
$$\frac{1}{2} = \frac{1}{8}$$

d)
$$\frac{2}{8} = \frac{4}{4}$$

f)
$$\frac{2}{2} = \frac{4}{4} = \frac{8}{8}$$

3) a) Label the fractions on the fraction wall.

			·	

b) Use the fraction wall to complete the equivalent fractions.

$$\frac{1}{3} = \frac{\boxed{}}{6} = \frac{3}{\boxed{}}$$

$$\frac{\boxed{}}{3} = \frac{4}{\boxed{}} = \frac{6}{9}$$

$$\frac{3}{3} = \frac{6}{3} = \frac{9}{3} = 1$$

/.	
7	1

Here is a fraction wall.

1/2					1/2				
<u>1</u> 3			1/3			1/3			
1/4			1/4		1/4				1/4
1/5		<u>1</u> 5	-		1 5		<u>1</u> 5		<u>1</u> 5
<u>1</u> 6	-	<u>l</u>		1/6	<u>1</u> 6		<u>1</u>	-	<u>1</u> 6

Is each statement true or false? Tick your answers.

a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$

True

b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$

False

c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$

d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$

e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$

f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.

Ask a partner to say if they are true or false.

5	Are the statements always, sometimes or never true?
	Circle your answer.

Draw a diagram to support your answer.

		always		sor	neti	mes		neve	r
a)	The	greater	the	numerator,	the	greater	the	fraction.	

aiwags	30ilie tillie3	never		

b) Fractions	equivalent	to	one	half	have	even	numerators.
---------------------	------------	----	-----	------	------	------	-------------

always	sometimes	never

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

always	sometimes	never

Equivalent fractions

Shade the shapes to show the equivalent fractions.

$$\frac{1}{4} = \frac{\boxed{}}{12}$$

$$\frac{3}{4} = \frac{\boxed{}}{12}$$

$$\frac{1}{6} = \frac{\Box}{\Box}$$

Draw two rectangles to show that $\frac{1}{3} = \frac{4}{12}$

a) Sort the fractions into the groups.

Equivalent to $\frac{1}{4}$

Equivalent to $\frac{1}{3}$

5	
15	

<u>6</u> 24

b) Write one more fraction in each group.

Complete the equivalent fractions.

a)
$$\frac{1}{7} = \frac{14}{14}$$

d)
$$\frac{3}{4} = \frac{6}{1}$$

a)
$$\frac{1}{7} = \frac{10}{14}$$
 d) $\frac{3}{4} = \frac{6}{15}$

b)
$$\frac{5}{7} = \frac{14}{14}$$

e)
$$\frac{3}{4} = \frac{12}{1}$$

b)
$$\frac{5}{7} = \frac{\boxed{14}}{14}$$
 e) $\frac{3}{4} = \frac{12}{\boxed{}}$ h) $\frac{2}{\boxed{}} = \frac{10}{25}$

c)
$$\frac{7}{8} = \frac{14}{12}$$
 i) $\frac{2}{7} = \frac{10}{12}$

f)
$$\frac{3}{4} = \frac{12}{12}$$

i)
$$\frac{2}{7} = \frac{10}{100}$$

j) Describe the pattern in part g), h) and i) to a partner.

- $\alpha) \frac{1}{\boxed{}} = \frac{7}{\boxed{}}$
- **b)** $\frac{7}{1} = \frac{14}{1}$

- $\frac{1}{\boxed{}} = \frac{7}{\boxed{}}$
- 7 = 14
- 7 = 14

- 1 = 7
- 7 = 14
- 7 = 14
- Ron is finding equivalent fractions to $\frac{1}{4}$

Do you agree with Ron? _____

Draw a diagram to support your answer.

Compare answers with a partner.

Find the values of A, B and C.

A 9

<u>2</u>

<u>C</u>

All the fractions are equivalent.

3 A B 14

12 C

A + B = 13

Work out the value of C.

$$9 \quad \frac{1}{5} = \frac{3}{1+9}$$

Find the value of

Fractions greater than 1

Complete the sentences.

There are 7 fifths altogether.

7 fifths = v	vhole +	fifths
--------------	---------	--------

fifths altogether. There are

	fifths =		wholes +
--	----------	--	----------

quarters altogether. There are

	quarters =		wholes +
--	------------	--	----------

	quarte
--	--------

Shade the bar models to represent the fractions.

Complete the number sentences.

a) $\frac{5}{3}$		

$$\frac{5}{3} =$$
 whole + thirds =

$$\frac{8}{3} =$$
 wholes + thirds =

c) $\frac{8}{5}$			

$$\frac{8}{5} =$$
 whole + fifths =

- 3 Complete the statements.
 - a) $\frac{12}{2} = \boxed{\hspace{1cm}}$ wholes
- e) $\frac{15}{3}$ = wholes
- b) $\frac{12}{4}$ = wholes
- f) $\frac{15}{5} =$ wholes
- c) $\frac{12}{6} =$ wholes
- g) $\frac{15}{4}$ = wholes + quarters
- d) $\frac{12}{3}$ = wholes
- h) $\frac{15}{2}$ = wholes + half
- Whitney bakes 26 muffins.

Muffins are packed in boxes of 4

a) How many boxes can Whitney fill?

Whitney can fill boxes.

b) How many more muffins does Whitney need to fill another box?

Whitney needs muffins to fill another box.

Explain how you know.

How does writing $\frac{26}{4}$ help you to answer this?

- a) 2 wholes and 3 quarters () 5 quarters
- b) 2 wholes and 3 quarters () 15 quarters
- c) 2 wholes and 3 sixths () 15 sixths
- d) 2 wholes and 3 eighths () 15 eighths
 - $\frac{15}{3}$ $\frac{15}{5}$
- f) $\frac{15}{3}$ $\frac{20}{4}$
- 6 Complete the part-whole models.

e)

Improper to mixed numbers

mbers

7

-		
α)		
u,		
-	ı	
	ı	

- Convert the improper fractions to mixed numbers.
 - a) $\frac{10}{2}$ =

e) $\frac{12}{5}$ =

b) $\frac{10}{3}$ =

f) $\frac{13}{6} =$

c) $\frac{10}{4}$ =

g) $\frac{13}{7} =$

d) $\frac{10}{5}$ =

- h) $\frac{31}{8}$ =
- Eva has 7 bottles of juice.

Each bottle contains half a litre of juice.

How many litres of juice does Eva have altogether?

Write your answer as a mixed number.

5 Dexter is converting improper fractions.

Explain why Dexter is incorrect.

6 Find the value of O

$$\frac{27}{\bigcirc} = \bigcirc \frac{2}{\bigcirc}$$

7 Find two possible values for \bigstar and \blacktriangle

$$\frac{30}{\bigstar} = \Delta \frac{2}{\bigstar}$$

