What is a fraction?

1) What fraction of each shape is shaded?
a)

c)

b)

d)

Shade each diagram to represent the fractions.
a)

$\frac{1}{6}$
b)

d)

(3)

Circle the unit fractions.

$\frac{1}{3}$	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{8}$	$\frac{2}{3}$	$\frac{10}{11}$

How do you know which are unit fractions?
4) a) Tick the shapes with one third shaded.

A

D

F

E

G

C

b) Complete the sentences to describe the shapes with one third shaded.

There are \square equal parts altogether.

\square of the shape is shaded.Draw an arrow to show the position of the fraction on the number line.
a) $\frac{1}{4}$

b) $\frac{3}{5}$

c) $\frac{1}{2}$

d) $\frac{1}{3}$

6) Draw an arrow to show the position of $\frac{5}{5}$ on the number line.

What do you notice?

7
Draw four different representations of $\frac{3}{4}$

8 Amir has drawn some 2D shapes.

a) What fraction of the shapes are triangles?
b) What fraction of the shapes are squares?
c) What fraction of the shapes have four sides?
d) Draw 2D shapes to match the description.
$\frac{1}{5}$ are squares, $\frac{2}{5}$ are triangles, $\frac{3}{5}$ have more than 3 sides.

Compare shapes with a partner.

What is the same about your shapes? Is anything different?

Shade the bar models to represent the equivalent fractions.
a)

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$\frac{1}{2}=\frac{3}{6}$
b)

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \frac{1}{10} & \frac{1}{10} \\
\hline
\end{array}
$$

c)

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \frac{1}{10} & \frac{1}{10} \\
\hline
\end{array}
$$

d) | $\frac{1}{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

2) Use the fraction wall to complete the equivalent fractions.

$\frac{1}{2}$				$\frac{1}{2}$			
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{8}$							

a) $\frac{1}{2}=\frac{\square}{4}$
c) $\frac{2}{4}=\frac{4}{\square}$
e)
$\frac{\square}{8}=\frac{3}{4}$
b) $\frac{1}{2}=\frac{\square}{8}$
d) $\frac{2}{8}=\frac{\square}{4}$
f) $\frac{2}{2}=\frac{\square}{4}=\frac{\square}{8}$
a) Label the fractions on the fraction wall.

b) Use the fraction wall to complete the equivalent fractions.

$$
\begin{aligned}
& \frac{1}{3}=\frac{\square}{6}=\frac{3}{\square \square} \\
& \frac{3}{\square}=\frac{6}{\square}=\frac{\square}{\square}=1
\end{aligned}
$$Here is a fraction wall.

$\frac{1}{2}$			1			
$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$		
$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$
$\frac{1}{5}$	$\frac{1}{5}$			$\frac{1}{5}$		$\frac{1}{5}$
$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$

Is each statement true or false? Tick your answers.
a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$
b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$
c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$
d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$
e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$
f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.
Ask a partner to say if they are true or false.

Are the statements always, sometimes or never true?
Circle your answer.
Draw a diagram to support your answer.
a) The greater the numerator, the greater the fraction.

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

1) Shade the shapes to show the equivalent fractions.

$\frac{1}{4}=\frac{\square}{12}$

(2)

Draw two rectangles to show that $\frac{1}{3}=\frac{4}{12}$
c) $\frac{7}{8}=\frac{14}{\square}$
f) $\frac{3}{4}=\frac{\square}{12}$
i) $\frac{2}{7}=\frac{10}{\square}$

$\frac{5}{15}$	$\frac{2}{6}$	$\frac{3}{12}$
$\frac{6}{24}$	$\frac{8}{24}$	$\frac{5}{20}$

b) Write one more fraction in each group.

4 Complete the equivalent fractions.
a) $\frac{1}{7}=\frac{\square}{14}$
b) $\frac{5}{7}=\frac{\square}{14}$
d) $\frac{3}{4}=\frac{6}{\square}$
e) $\frac{3}{4}=\frac{12}{\square}$
g) $\frac{2}{\square}=\frac{10}{15}$
h) $\frac{2}{\square}=\frac{10}{25}$
J)
a) Sort the fractions into the groups.Find three ways to make the fractions equivalent.
a)

b) $\frac{7}{\square}=\frac{14}{\square}$
c)

6 Ron is finding equivalent fractions to $\frac{1}{4}$

Do you agree with Ron? \qquad
Draw a diagram to support your answer.
\square
Compare answers with a partner.

7 Here are some equivalent fractions.
Find the values of A, B and C.
$\frac{A}{9} \frac{3}{B} \frac{2}{18} \frac{C}{90}$

$B=$

$C=$ \square

8 Here are three fraction cards.
All the fractions are equivalent.
$\frac{3}{A} \quad \frac{B}{14} \quad \frac{12}{C}$

$$
A+B=13
$$

Work out the value of C.
(9) $\frac{1}{5}=\frac{3}{1+\square}$

Find the value of

\square

Fractions greater than 1

(1) Complete the sentences.

There are 7 fifths altogether.
7 fifths $=\square$ whole $+\square$ fifths

There are \square quarters altogether.
\square wholes +
\square quarter

Shade the bar models to represent the fractions.
Complete the number sentences.
a) $\frac{5}{3}$

b) $\frac{8}{3}$

c) $\frac{8}{5}$

3 Complete the statements.
a) $\frac{12}{2}=$ \square wholes
e) $\frac{15}{3}=$ \square wholes
b) $\frac{12}{4}=$ \square wholes
f) $\frac{15}{5}=$ \square wholes
c) $\frac{12}{6}=$ \square wholes
g) $\frac{15}{4}=\square$ wholes +
\square quarters
d) $\frac{12}{3}=$ \square wholes
h) $\frac{15}{2}=\square$ wholes + \square half

Whitney bakes 26 muffins. Muffins are packed in boxes of 4
a) How many boxes can Whitney fill?

Whitney can fill \square boxes.
b) How many more muffins does Whitney need to fill another box?
Whitney needs \square muffins to fill another box.

Explain how you know.
\qquad

How does writing $\frac{26}{4}$ help you to answer this?
(5) Write $<$, $>$ or $=$ to complete the statements.
a) 2 wholes and 3 quarters
 5 quarters
b) 2 wholes and 3 quarters
 15 quarters
c) 2 wholes and 3 sixths
 15 sixths
d) 2 wholes and 3 eighths
 15 eighths
e)

6) Complete the part-whole models.

c)

b)

2 Shade the bar models to represent each improper fraction. Convert the improper fractions to mixed numbers.

a) | | | |
| :--- | :--- | :--- |

b) | | | | | |
| :--- | :--- | :--- | :--- | :--- |

d)

d)

Dexter is converting improper fractions.
a) $\frac{10}{2}=$ \square
e) $\frac{12}{5}=$ \square
b) $\frac{10}{3}=$ \square
f) $\frac{13}{6}=\square$
c) $\frac{10}{4}=$ \square
g) $\frac{13}{7}=\square$
d) $\frac{10}{5}=$ \square
h) $\frac{31}{8}=$ \square
4. Eva has 7 bottles of juice

Each bottle contains half a litre of juice.

How many litres of juice does Eva have altogether?

Write your answer as a mixed number.

Explain why Dexter is incorrect.

6 Find the value of \bigcirc

$$
\frac{27}{\bigcirc}=\bigcirc \frac{2}{\bigcirc}
$$

(7) Find two possible values for $t \frac{1}{4}$ and Δ

