## Divide 2-digits by 1-digit (1)



There are 84 pencils to be shared equally into 4 pots.



























| Tens  | Ones |
|-------|------|
| 10 10 |      |
| 10 10 | Û    |
| 10 10 |      |
| 10 10 | Û    |

**b)** Complete the number sentences.

8 tens 
$$\div$$
 4 =  $\boxed{2}$  tens

c) How many pencils are in each pot?



Use a place value chart to work out the calculations.

a) 
$$39 \div 3 = |3|$$



| Tens  | Ones |
|-------|------|
| 10 10 |      |
| 10 10 |      |

Complete the part-whole model to show what Amir has done.



Work out the divisions.

a) 
$$69 \div 3 = 23$$





Work out the divisions.

a) 
$$93 \div 3 = 3$$







What do you notice?







Do you agree with Annie? <u>Yes</u> Explain why.

Can Annie divide 88 equally by any other 1-digit numbers?



Esther has 2 jars of mints.

Esther shares the mints equally between 3 bowls.

How many mints are in each bowl?





There are 32 mints in each bowl.

How many different ways can you work out the answer?





## Divide 2-digits by 1-digit (2)



Rosie has 56 pencils.

a) Draw base 10 to represent the pencils.



Rosie shares the 56 pencils equally between 4 pots.

b) Draw base 10 on the place value grid to share the pencils.

| Tens | Ones    |
|------|---------|
|      | • • 6 6 |
|      | * * •   |
|      |         |
|      |         |





d) Did you have to make an exchange?



Eva has this money.













She wants to share the money equally between 3 people.

a) Use the place value chart to show how Eva can share the money.

| Tens | Ones     |
|------|----------|
| £10  | EI EI EI |
| £10  | EI EI EI |
| £10  | EI EI EI |

b) How much money does each person get?







| Tens   | Ones |
|--------|------|
| 10 10  |      |
| 10 (10 |      |
| 10 (10 |      |

Use the place value counters to help you.











c) 
$$92 \div 4 = 23$$

Rosie and Tommy are working out 52 ÷ 4

They both use a part-whole model.

Rosie

**Tommy** 



a) Whose part-whole model will help them with the division?



How do you know?

40 and 12 are both divisible by

4

b) Use a part-whole model to work out 52 ÷ 4

13

Use the part-whole models to complete the divisions.





7 Here are 3 divisions.

a) What is the same about the questions? What is different?



b) Complete the divisions.

c) What do you notice? Talk about it with a partner.





## Divide 2-digits by 1-digit (3)









He uses them to make squares.

How many squares can Mo make?



Complete the sentences.

There are 17 lolly sticks.

There are 4 groups of 4

There is | lolly stick remaining.



Mo can make 🛴 squares.



How many triangles can Mo make?





Complete the sentences.



There are 5 groups of 3

There are 2 lolly sticks remaining.

$$17 \div 3 = \boxed{5}$$
 remainder  $\boxed{2}$ 

Mo can make 5 triangles.

Finally, Mo uses the lolly sticks to make pentagons.

How many pentagons can Mo make?



Complete the sentences.

There are 17 lolly sticks.

There are 3 groups of 5

There are | 1 lolly sticks remaining.

$$17 \div 5 = \boxed{3}$$
 remainder  $\boxed{2}$ 

Mo can make 3 pentagons.

4 Use repeated subtraction to complete the divisions.

Use the number lines to help you.

a) 
$$23 \div 4 = \boxed{5}$$
 remainder  $\boxed{3}$ 







c) 
$$23 \div 3 = 7$$
 remainder  $2$ 



Eva works out 34 ÷ 4







Is Eva correct? No

How do you know?

6 Complete the calculations.

How do you know there is no remainder when 75 is divided by 5?

## 75 has 5 ones so it is in the 5 times table.

Without doing the division, what is the remainder when 76 is divided by 5?



8 Use place value counters and a place value chart to work out the divisions.

a) 
$$87 \div 4 = 21$$
 remainder 3

b) 
$$77 \div 3 = 25$$
 remainder  $2$ 

c) 
$$74 \div 5 = 14$$
 remainder  $4$ 

Teddy has fewer than 60 marbles but more than 40

When he shares them equally into 3 pots he has no remainders.

When he shares them equally into 4 pots he has remainder 3

When he shares them equally into 5 pots he has remainder 1

How many marbles could Teddy have?



